#
# = One dimensional Minimization
#
# This chapter describes routines for finding minima of arbitrary 
# one-dimensional functions.
#
#
# Contents:
# 1. {Introduction}[link:files/rdoc/min_rdoc.html#1]
# 1. {GSL::Min::FMinimizer class}[link:files/rdoc/min_rdoc.html#2]
# 1. {Iteration}[link:files/rdoc/min_rdoc.html#3]
# 1. {Stopping Parameters}[link:files/rdoc/min_rdoc.html#4]
# 1. {Examples}[link:files/rdoc/min_rdoc.html#5]
#
# == {}[link:index.html"name="1] Introduction
#
# The minimization algorithms begin with a bounded region known to contain 
# a minimum. The region is described by <tt>a</tt> lower bound a and an upper bound 
# <tt>b</tt>, with an estimate of the location of the minimum <tt>x</tt>.
#
# The value of the function at <tt>x</tt> must be less than the value of the 
# function at the ends of the interval,
#   f(a) > f(x) < f(b)
# This condition guarantees that a minimum is contained somewhere within the 
# interval. On each iteration a new point <tt>x'</tt> is selected using one of the
# available algorithms. If the new point is a better estimate of the minimum, 
# <tt>f(x') < f(x)</tt>, then the current estimate of the minimum <tt>x</tt> is 
# updated. The new point also allows the size of the bounded interval to be 
# reduced, by choosing the most compact set of points which satisfies the 
# constraint <tt>f(a) > f(x) < f(b)</tt>. The interval is reduced until it 
# encloses the true minimum to a desired tolerance. This provides a best 
# estimate of the location of the minimum and a rigorous error estimate.
#
# Several bracketing algorithms are available within a single framework. 
# The user provides a high-level driver for the algorithm, and the library 
# provides the individual functions necessary for each of the steps. There 
# are three main phases of the iteration. The steps are,
# * initialize minimizer (or <tt>solver</tt>) state, <tt>s</tt>, for algorithm <tt>T</tt>
# * update <tt>s</tt> using the iteration <tt>T</tt>
# * test <tt>s</tt> for convergence, and repeat iteration if necessary
#
# The state of the minimizers is held in a <tt>GSL::Min::FMinimizer</tt> object. 
# The updating procedure use only function evaluations (not derivatives).
# The function to minimize is given as an instance of the {GSL::Function}[link:files/rdoc/function_rdoc.html] class to the minimizer.
#
#
# == {}[link:index.html"name="2] GSL::Min::FMinimizer class
# ---
# * GSL::Min::FMinimizer.alloc(t)
#
#   These method create an instance of the <tt>GSL::Min::FMinimizer</tt> class of 
#   type <tt>t</tt>. The type <tt>t</tt> is given by a String,
#   * "goldensection"
#   * "brent"
#   * "quad_golden"
#   or by a Ruby constant,
#   * GSL::Min::FMinimizer::GOLDENSECTION
#   * GSL::Min::FMinimizer::BRENT
#   * GSL::Min::FMinimizer::QUAD_GOLDEN (GSL-1.13)
#
#   ex)
#       include GSL::Min
#       s = FMinimizer.alloc(FMinimizer::BRENT)
#
# ---
# * GSL::Min::FMinimizer#set(f, xmin, xlow, xup)
#
#   This method sets, or resets, an existing minimizer <tt>self</tt> to use 
#   the function <tt>f</tt> (given by a <tt>GSL::Function</tt>
#   object) and the initial search interval [<tt>xlow, xup</tt>], 
#   with a guess for the location of the minimum <tt>xmin</tt>.
#
#   If the interval given does not contain a minimum, then the 
#   method returns an error code of <tt>GSL::FAILURE</tt>.
#
# ---
# * GSL::Min::FMinimizer#set_with_values(f, xmin, fmin, xlow, flow, xup, fup)
#
#   This method is equivalent to <tt>Fminimizer#set</tt> but uses the values 
#   <tt>fmin, flowe</tt> and <tt>fup</tt> instead of computing 
#   <tt>f(xmin), f(xlow)</tt> and <tt>f(xup)</tt>.
#
# ---
# * GSL::Min::FMinimizer#name
#
#   This returns the name of the minimizer. 
#
# == {}[link:index.html"name="3] Iteration
# ---
# * GSL::Min::FMinimizer#iterate
#
#   This method performs a single iteration of the minimizer <tt>self</tt>. 
#   If the iteration encounters an unexpected problem then an error code 
#   will be returned,
#   * <tt>GSL::EBADFUNC</tt>: the iteration encountered a singular point where the 
#     function evaluated to <tt>Inf</tt> or <tt>NaN</tt>.
#   * <tt>GSL::FAILURE</tt>: the algorithm could not improve the current best 
#     approximation or bounding interval.
#   The minimizer maintains a current best estimate of the position of 
#   the minimum at all times, and the current interval bounding the minimum. 
#   This information can be accessed with the following auxiliary methods
#
# ---
# * GSL::Min::FMinimizer#x_minimum
#
#   Returns the current estimate of the position of the minimum 
#   for the minimizer <tt>self</tt>.
#
# ---
# * GSL::Min::FMinimizer#x_upper
# * GSL::Min::FMinimizer#x_lower
#
#   Return the current upper and lower bound of the interval for the 
#   minimizer <tt>self</tt>.
#
# ---
# * GSL::Min::FMinimizer#f_minimum
# * GSL::Min::FMinimizer#f_upper
# * GSL::Min::FMinimizer#f_lower
#
#   Return the value of the function at the current estimate of the 
#   minimum and at the upper and lower bounds of interval 
#   for the minimizer <tt>self</tt>.
#
# == {}[link:index.html"name="4] Stopping Parameters
# ---
# * GSL::Min::FMinimizer#test_interval(epsabs, epsrel)
# * GSL::Min.test_interval(xlow, xup, epsabs, epsrel)
#
#   These methoeds test for the convergence of the interval 
#   [<tt>xlow, xup</tt>] with absolute error <tt>epsabs</tt> and relative 
#   error <tt>epsrel</tt>. The test returns <tt>GSL::SUCCESS</tt> 
#   if the following condition is achieved,
#     |a - b| < epsabs + epsrel min(|a|,|b|) 
#   when the interval <tt>x = [a,b]</tt> does not include the origin. 
#   If the interval includes the origin then <tt>min(|a|,|b|)</tt> is 
#   replaced by zero (which is the minimum value of |x| over the interval). 
#   This ensures that the relative error is accurately estimated for minima 
#   close to the origin.
#
#   This condition on the interval also implies that any estimate of the 
#   minimum x_m in the interval satisfies the same condition with respect 
#   to the true minimum x_m^*,
#     |x_m - x_m^*| < epsabs + epsrel x_m^*
#   assuming that the true minimum x_m^* is contained within the interval.
#
# == {}[link:index.html"name="5] Example
# To find the minimum of the function f(x) = cos(x) + 1.0:
#
#      #!/usr/bin/env ruby
#      require("gsl")
#      include GSL::Min
#
#      fn1 = Function.alloc { |x| Math::cos(x) + 1.0 }
#
#      iter = 0;  max_iter = 500
#      m = 2.0             # initial guess
#      m_expected = Math::PI
#      a = 0.0
#      b = 6.0
#
#      gmf = FMinimizer.alloc(FMinimizer::BRENT)
#      gmf.set(fn1, m, a, b)
#
#      printf("using %s method\n", gmf.name)
#      printf("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "min",
#             "err", "err(est)")
#
#      printf("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", iter, a, b, m, m - m_expected, b - a)
#
#      begin
#        iter += 1
#        status = gmf.iterate
#        status = gmf.test_interval(0.001, 0.0)
#        puts("Converged:") if status == GSL::SUCCESS
#        a = gmf.x_lower
#        b = gmf.x_upper
#        m = gmf.x_minimum
#        printf("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n",
#               iter, a, b, m, m - m_expected, b - a);
#      end while status == GSL::CONTINUE and iter < max_iter
#
# {prev}[link:files/rdoc/roots_rdoc.html]
# {next}[link:files/rdoc/multiroot_rdoc.html]
#
# {Reference index}[link:files/rdoc/ref_rdoc.html]
# {top}[link:files/rdoc/index_rdoc.html]
#
#