// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_CASTS_H_ #define BASE_CASTS_H_ #include // for use with down_cast<> #include // for memcpy #include "base/macros.h" // Use implicit_cast as a safe version of static_cast or const_cast // for upcasting in the type hierarchy (i.e. casting a pointer to Foo // to a pointer to SuperclassOfFoo or casting a pointer to Foo to // a const pointer to Foo). // When you use implicit_cast, the compiler checks that the cast is safe. // Such explicit implicit_casts are necessary in surprisingly many // situations where C++ demands an exact type match instead of an // argument type convertable to a target type. // // The From type can be inferred, so the preferred syntax for using // implicit_cast is the same as for static_cast etc.: // // implicit_cast(expr) // // implicit_cast would have been part of the C++ standard library, // but the proposal was submitted too late. It will probably make // its way into the language in the future. template inline To implicit_cast(From const &f) { return f; } // When you upcast (that is, cast a pointer from type Foo to type // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts // always succeed. When you downcast (that is, cast a pointer from // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because // how do you know the pointer is really of type SubclassOfFoo? It // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, // when you downcast, you should use this macro. In debug mode, we // use dynamic_cast<> to double-check the downcast is legal (we die // if it's not). In normal mode, we do the efficient static_cast<> // instead. Thus, it's important to test in debug mode to make sure // the cast is legal! // This is the only place in the code we should use dynamic_cast<>. // In particular, you SHOULDN'T be using dynamic_cast<> in order to // do RTTI (eg code like this: // if (dynamic_cast(foo)) HandleASubclass1Object(foo); // if (dynamic_cast(foo)) HandleASubclass2Object(foo); // You should design the code some other way not to need this. template // use like this: down_cast(foo); inline To down_cast(From* f) { // so we only accept pointers // Ensures that To is a sub-type of From *. This test is here only // for compile-time type checking, and has no overhead in an // optimized build at run-time, as it will be optimized away // completely. if (false) { implicit_cast(0); } assert(f == NULL || dynamic_cast(f) != NULL); // RTTI: debug mode only! return static_cast(f); } // Overload of down_cast for references. Use like this: down_cast(foo). // The code is slightly convoluted because we're still using the pointer // form of dynamic cast. (The reference form throws an exception if it // fails.) // // There's no need for a special const overload either for the pointer // or the reference form. If you call down_cast with a const T&, the // compiler will just bind From to const T. template inline To down_cast(From& f) { COMPILE_ASSERT(base::is_reference::value, target_type_not_a_reference); typedef typename base::remove_reference::type* ToAsPointer; if (false) { // Compile-time check that To inherits from From. See above for details. implicit_cast(0); } assert(dynamic_cast(&f) != NULL); // RTTI: debug mode only return static_cast(f); } // bit_cast is a template function that implements the // equivalent of "*reinterpret_cast(&source)". We need this in // very low-level functions like the protobuf library and fast math // support. // // float f = 3.14159265358979; // int i = bit_cast(f); // // i = 0x40490fdb // // The classical address-casting method is: // // // WRONG // float f = 3.14159265358979; // WRONG // int i = * reinterpret_cast(&f); // WRONG // // The address-casting method actually produces undefined behavior // according to ISO C++ specification section 3.10 -15 -. Roughly, this // section says: if an object in memory has one type, and a program // accesses it with a different type, then the result is undefined // behavior for most values of "different type". // // This is true for any cast syntax, either *(int*)&f or // *reinterpret_cast(&f). And it is particularly true for // conversions betweeen integral lvalues and floating-point lvalues. // // The purpose of 3.10 -15- is to allow optimizing compilers to assume // that expressions with different types refer to different memory. gcc // 4.0.1 has an optimizer that takes advantage of this. So a // non-conforming program quietly produces wildly incorrect output. // // The problem is not the use of reinterpret_cast. The problem is type // punning: holding an object in memory of one type and reading its bits // back using a different type. // // The C++ standard is more subtle and complex than this, but that // is the basic idea. // // Anyways ... // // bit_cast<> calls memcpy() which is blessed by the standard, // especially by the example in section 3.9 . Also, of course, // bit_cast<> wraps up the nasty logic in one place. // // Fortunately memcpy() is very fast. In optimized mode, with a // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline // code with the minimal amount of data movement. On a 32-bit system, // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8) // compiles to two loads and two stores. // // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1. // // WARNING: if Dest or Source is a non-POD type, the result of the memcpy // is likely to surprise you. // template inline Dest bit_cast(const Source& source) { // Compile time assertion: sizeof(Dest) == sizeof(Source) // A compile error here means your Dest and Source have different sizes. typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1]; Dest dest; memcpy(&dest, &source, sizeof(dest)); return dest; } #endif // BASE_CASTS_H_