require 'svmkit/base/base_estimator' require 'svmkit/base/classifier' module SVMKit # This module consists of the classes that implement generalized linear models. module LinearModel # PegasosSVC is a class that implements Support Vector Classifier with the Pegasos algorithm. # # estimator = # SVMKit::LinearModel::PegasosSVC.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # # * *Reference*: # - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007. # class PegasosSVC include Base::BaseEstimator include Base::Classifier DEFAULT_PARAMS = { # :nodoc: reg_param: 1.0, max_iter: 100, batch_size: 50, random_seed: nil }.freeze # The weight vector for SVC. attr_reader :weight_vec # The random generator for performing random sampling in the Pegasos algorithm. attr_reader :rng # Create a new classifier with Support Vector Machine by the Pegasos algorithm. # # :call-seq: # new(reg_param: 1.0, max_iter: 100, batch_size: 50, random_seed: 1) -> PegasosSVC # # * *Arguments* : # - +:reg_param+ (Float) (defaults to: 1.0) -- The regularization parameter. # - +:max_iter+ (Integer) (defaults to: 100) -- The maximum number of iterations. # - +:batch_size+ (Integer) (defaults to: 50) -- The size of the mini batches. # - +:random_seed+ (Integer) (defaults to: nil) -- The seed value using to initialize the random generator. def initialize(params = {}) self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) self.params[:random_seed] ||= srand @weight_vec = nil @rng = Random.new(self.params[:random_seed]) end # Fit the model with given training data. # # :call-seq: # fit(x, y) -> PegasosSVC # # * *Arguments* : # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The training data to be used for fitting the model. # - +y+ (NMatrix, shape: [1, n_samples]) -- The labels to be used for fitting the model. # * *Returns* : # - The learned classifier itself. def fit(x, y) # Generate binary labels negative_label = y.uniq.sort.shift bin_y = y.to_flat_a.map { |l| l != negative_label ? 1 : -1 } # Initialize some variables. n_samples, n_features = x.shape rand_ids = [*0..n_samples - 1].shuffle(random: @rng) @weight_vec = NMatrix.zeros([1, n_features]) # Start optimization. params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(params[:batch_size]) rand_ids.concat(subset_ids) target_ids = subset_ids.map do |n| n if @weight_vec.dot(x.row(n).transpose) * bin_y[n] < 1 end n_subsamples = target_ids.size next if n_subsamples.zero? # update the weight vector. eta = 1.0 / (params[:reg_param] * (t + 1)) mean_vec = NMatrix.zeros([1, n_features]) target_ids.each { |n| mean_vec += x.row(n) * bin_y[n] } mean_vec *= eta / n_subsamples @weight_vec = @weight_vec * (1.0 - eta * params[:reg_param]) + mean_vec # scale the weight vector. scaler = (1.0 / params[:reg_param]**0.5) / @weight_vec.norm2 @weight_vec *= [1.0, scaler].min end self end # Calculate confidence scores for samples. # # :call-seq: # decision_function(x) -> NMatrix, shape: [1, n_samples] # # * *Arguments* : # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to compute the scores. # * *Returns* : # - Confidence score per sample. def decision_function(x) @weight_vec.dot(x.transpose) end # Predict class labels for samples. # # :call-seq: # predict(x) -> NMatrix, shape: [1, n_samples] # # * *Arguments* : # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to predict the labels. # * *Returns* : # - Predicted class label per sample. def predict(x) decision_function(x).map { |v| v >= 0 ? 1 : -1 } end # Claculate the mean accuracy of the given testing data. # # :call-seq: # predict(x, y) -> Float # # * *Arguments* : # - +x+ (NMatrix, shape: [n_samples, n_features]) -- Testing data. # - +y+ (NMatrix, shape: [1, n_samples]) -- True labels for testing data. # * *Returns* : # - Mean accuracy def score(x, y) p = predict(x) n_hits = (y.to_flat_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+) n_hits / y.size.to_f end # Serializes object through Marshal#dump. def marshal_dump # :nodoc: { params: params, weight_vec: Utils.dump_nmatrix(@weight_vec), rng: @rng } end # Deserialize object through Marshal#load. def marshal_load(obj) # :nodoc: self.params = obj[:params] @weight_vec = Utils.restore_nmatrix(obj[:weight_vec]) @rng = obj[:rng] nil end end end end